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Abstract. Cluster-size evolution for bond dilution on a lattice is formulated as a set of rate 
equations for the cluster number densities. The formulation incorporates dependence of 
the bond removal rate on cluster size. For the Bethe lattice, the transition rates appearing 
in this equation are derived explicitly, yielding a tractable set of rate equations. The 
solution of these equations for a special case in which dilution occurs only in the infinite 
cluster is compared with the cluster-size distribution for Bernoulli percolation. 

1. Introduction 

Variants of von Smoluchowski’s (1916, 1917) rate equation method for coagulation 
have recently been applied to various irreversible (Ziff 1980, Kang et a1 1986) and 
reversible (van Dongen and Ernst 1984, Family et al 1986, Ernst and van Dongen 
1987) aggregation processes, and to depolymerisation (bond dilution) on linear chains 
(Ziff and McGrady 1985, 1986). Here, the rate equation method for bond dilution is 
formally generalised to lattices within the framework of the kinetic theory of reversible 
polymerisation (van Dongen and Ernst 1984). For the Bethe lattice, combinatoric 
coefficients corresponding to transition rates in that theory are evaluated explicitly, 
and numerical results are obtained for some cases of interest. 

The rate equation method is applied here to a class of bond dilution problems, 
including Bernoulli percolation (i.e. equal dilution rate for all bonds) as a special case. 
For Bernoulli percolation on the Bethe lattice, the exact solution of the cluster-size 
problem is known (Fisher and Essam 1961). Another case with known solutions is 
bond dilution on linear chains, with bond removal rates dependent on chain length 
and bond position within the chain (Ziff and McGrady 1985, 1986). The problems 
considered here involve lattices with bond removal rates dependent on cluster size. 
For the Bethe lattice, the rate equation formulation renders these problems computa- 
tionally tractable. An explicit solution is obtained for a special case in which dilution 
occurs only in the infinite cluster. This solution is compared with the cluster-size 
distribution for Bernoulli percolation. 

In the framework of reversible polymerisation theory (van Dongen and Ernst 1984), 
rate equations for bond dilution can be formulated for an arbitrary lattice as 

I 

ac,ldt = -sR,c, + iRiBi,c, + R,p,B,,. 
r = s + 1  
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Here, c, is the number density of s-clusters (i.e. the number of s-bond clusters per 
lattice bond), R, is the bond removal rate from s-clusters, R ,  is the bond removal 
rate from the infinite (percolating) cluster, E,, is the expected number of s-clusters 
produced by removing one bond from an i-cluster, p ,  is the number density of bonds 
comprising the infinite cluster and E,, is the expected number of s-clusters produced 
by removing one bond from the infinite cluster. 

Although site dilution is not treated explicitly here, this formulation and the results 
obtained therefrom are readily adapted for site dilution, or for bond dilution with 
cluster size based on site counting. 

For Bernoulli percolation (i.e. identical removal rate R,( t )  = R,( t )  = R (  t )  for all 
bonds), the fraction p of bonds remaining in the lattice at time t is 

p = exp( - Io' R (  t ' )  dt') 

based on a non-diluted lattice ( p  = 1) initially. Equation ( 2 )  establishes the correspon- 
dence, for Bernoulli percolation, between the dynamic formulation, ( l ) ,  and the usual 
static problem parametrised by p .  Other bond dilution processes cannot always be 
formulated as static problems, though the processes analysed here can be so formulated. 

For Bernoulli percolation on finite-dimensional lattices, p ,  is a familiar quantity 
(Stauffer 1985), but little is known about the quantities E,, or Ei,. E,, must depend 
on p since it is zero for all s when p = 1, but non-zero for pc  S p < 1 ( p c  is the percolation 
threshold). Likewise, Bi, must depend on p .  For instance, depends on the 
expected number of bonds adjacent to the perimeter of an (s + 1)-cluster, which is 
p-dependent (Stauffer 1985) (e.g. compare percolation clusters ( p  = p c )  with lattice 
animals ( p  + 0)). The p dependences of E,, and Ei, for Bernoulli percolation on 
finite-dimensional lattices are unknown. Even if they were known, these p dependences 
would not necessarily apply to other bond dilution processes, so (1) may not be useful 
for analysing the more general class of bond dilution processes on finite-dimensional 
lattices. 

For Bernoulli percolation on the Bethe lattice with coordination number z, an 
implicit expression for pa(  p )  is available (Fisher and Essam 1961), and expressions 
for E,, and Ei, can be derived, as demonstrated shortly. Furthermore, the expressions 
are valid for the general class of problems represented by (1). This is a consequence 
of the fact that all Bethe lattice clusters of given size s have equal perimeters, of size 
U = z + ( z  - 2 ) s  (Fisher and Essam 1961). s and U are the only cluster properties 
determining the relative contributions of cluster configurations to the sources and sinks 
in ( l) ,  so all cluster configurations for given s are equally likely, as for Bernoulli 
percolation (Fisher and Essam 1961). It also follows that the quantities Bi, are purely 
combinatoric for the Bethe lattice and therefore independent of p .  On the other hand, 
E,, is still p dependent because it must still be zero for all s at p = 1 but non-zero for 
p c s p <  1. 

Turning therefore to Bernoulli percolation on the z-coordinated Bethe lattice, the 
time derivative of (2) gives dp/dt  = - R (  t ) p ,  so that (1) becomes 

Here and henceforth, n, is used in place of c, to denote the number density of s-clusters 
for the special case of Bernoulli percolation. In § 3, h, = c, - n, denotes the deviation 
of the number density for a non-Bernoulli case from the Bernoulli solution. The minus 
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sign on the left-hand side of (3)  reflects the reduction of p from its initial value p a  = 1 
as bond dilution proceeds. 

2. Transition rates for the Bethe lattice 

Recall that the transition rate Bis is defined as the expected number of s-clusters 
produced by removing one bond from an i-cluster. In accordance with the prescription 
of van Dongen and Ernst (1984), this quantity is derived by constructing i-clusters 
with s bonds on one side of a given bond and i - s - 1 bonds on the other side of that 
bond. (Such a cluster will yield an s-cluster and an ( i  - s - 1)-cluster when the given 
bond is removed.) Since all configurations of an i-cluster are equally likely, Bis is 
equal to twice the number of distinct configurations thus obtained, divided by the total 
number K i  of distinct i-cluster configurations containing a given bond. (The factor 
of two appears because the s-cluster may occur on either side of the given bond or, 
for the case i = 2s + 1, on both sides. K i  corresponds to the quantity ibi of Fisher and 
Essam (1961).) Thus 

Bt, = 2 Qs + i Qt - S I  Kt (4) 

where denotes the number of distinct configurations consisting of s bonds on 
one side of a given bond. 

Qs+l is evaluated using a recursion relation. Van Dongen and Ernst (1984) have 
indicated how such a recursion relation can be constructed for general polymer 
configurations. Here, their approach is applied to loopless configurations with 
maximum coordination z at any node, i.e. to bond clusters on the z-coordinated Bethe 
lattice. For this case, an explicit solution of the recursion relation is obtained. 

consists of the given bond and z - 1  
‘subclusters’ attached to one side of that bond. These subclusters contain, respectively, 
s1 , s2 , .  . . , s , - ~  bonds, where Z,Z: s, = s. Empty subclusters are allowed, so sJ ranges 
from 0 to s. Each non-empty subcluster is analogous to the original set of s + 1 bonds 
in that it consists of a bond and z - 1 subclusters attached to that bond. Therefore the 
specification of configurations contributing to is applicable to non-empty sub- 
clusters, namely there are Q ,  distinct subclusters consisting of s, bonds. The enumer- 
ation is extended to empty subclusters in a consistent manner by setting Qo= 1. The 
number Qstl of distinct configurations is the product of the number of distinct 
configurations of the z - 1  subclusters, summed over the allowed values of sl, 

Each configuration contributing to 

~ 2 , .  . . , ~ ~ - 1 .  Thus 

s s  5 

Qs+i = C C + as,+s,+ + s z _ , , s Q s , Q s , ~ ~  1 QS:-t. ( 5 )  
s , = O  s 2 = o  s ; _ , = o  

Here, Kronecker delta notation is employed to incorporate the constraint X;fI: sJ = s. 
To evaluate Qs using ( 5 ) ,  that equation is expressed in terms of the generating 

function g(w)=Z:=l Q s w s  by multiplying the equation by w s + l  and summing over s 
ranging from 0 to 00. Recalling that Qo= 1, this gives 

( 6 )  

Motivated by Fisher and Essam’s (1961) method for evaluating the quantity K , ,  Qs is 

g = w (  1 + gy-I.  
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evaluated by exploiting the identity 

This identity follows from the residue theorem, regarding w as a complex variable and 
taking the contour of integration to be a small closed loop encircling the origin. Near 
the origin, the analytic behaviour of g is the same as that of w. Therefore a change 
of variables based on (6) and its derivative: 

gives 

(9) 
1 os =2.rri (1 +g)(z-1)5-1 [ 1 + (2 - ~ ) g ] g - "  dg. 

The residue is evaluated by expanding the first factor in the integrand in a power series 
in g. The final result is Q1 = 1 and 

2 - 1  (2-1)s-1 
Q 5 = d  s - 2  ) 

for s >  1. 

(1961) result: 
Bi, can now be evaluated by substituting (10) into (4) and using Fisher and Essam's 

2s 
K ,  = 

(s + l)[(z - 1)s + z ]  

Having thus determined Bis, the quantity pmB,, can be determined from (3) based on 
the expression (Fisher and Essam 1961) 

(12) sn, = ~ , p S ( 1  -p)Zf(Z-2)S 

for the cluster-size distribution for Bernoulli percolation on the Bethe lattice. Using 
(4) and (12), the sum in (3 )  can be expressed as 

f iBisni =2QS+,(1 -p)'w'g(w) 
i = s + l  

where 

w = p (  1 -p)? (14) 
An ambiguity has been introduced in that (6) for g ( w )  has two positive solutions for 
0 < w < ( z  - 2)'-2/( z - l)'-'. ( w  falls within this range for 0 < p < 1 except that it equals 
the upper bound at p = p c  = l / ( z  - l).) For w given by (14), g = p / (  1 - p )  satisfies (6). 
Following Fisher and Essam (1961), the appropriate root of (6) is obtained for all p 
by choosing g = p * / (  1 - p * ) ,  where p *  is the root of p * (  1 - P * ) ' - ~  = p (  1 - P ) ' - ~  that 
vanishes continuously as p + 0 or p + 1. For p < p c ,  this gives p *  = p .  

Finally, evaluation of the p derivative of n, and rearrangement of terms in (3) gives 

(15) 
pns 

pal?,, = [ z  + ( 2  - 2 ) s ]  -- 2 o s +  1 ( 1 - P )'w"( w ). 
1 -P 
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Since p m  can likewise be expressed in terms of p* (Fisher and Essam 1961), the 
prescription for B,, is complete. It is readily verified that the right-hand side of (15) 
vanishes for g = p / ( 1  - p ) ,  consistent with the choice of this root of ( 6 )  for p < p c .  In 
fact, imposition of the requirement that pmB,, must vanish for g = p / (  1 - p )  provides 
an alternate method for deriving ( 10) without using contour integration. 

3. The generalised bond dilution problem 

To analyse the generalised bond dilution problem, ( l ) ,  with arbitrary removal rates 
R,( t ) ,  it is convenient to reparametrise that problem in terms of the quantity 

p = exp( -jo' R,( t ' )  dt') 

which is the fraction of bonds that would remain in the lattice at time t if R,(t) were 
equal to R , ( t )  for all s. Thus, the structure of the infinite cluster for given p is the 
same as for Bernoulli percolation with a fraction p of the bonds remaining. Based on 
(16), (1) can be expressed as 

- p a c , / a p  = -sr,c, + 1 ir ,B,,c,+p,B,,  
, = , + I  

where r , ( t )  = R , ( t ) / R , ( t ) .  
Defining h, by the relation c, = n, + h,, subtraction of (3 )  from (17) gives 

00 

- p a h , / a p  = -s(r ,c ,  - n , ) +  1 iBlS(r ,cn - n , )  
, = , + I  

thus eliminating the infinite-cluster term. This reduces to a solvable system of equations 
for at least three cases: (i)  r, = 1 for all i > I ,  in which case c, = n, for all i > I so the 
upper limit of the sum becomes I ,  ( i i )  r, = 0 for all i > I ,  in which case the infinite 
sum can be evaluated using (13), and (iii) z = 2 (the linear chain), for which explicit 
solutions have been obtained by Ziff and McGrady (1985, 1986) for various functional 
dependences of r, on i. 

A case of particular interest is r, = 0 for all i, i.e. the case in which bond dilution 
occurs only in the infinite cluster. In this case, c, is the size distribution of the 'primary 
fragments' which evolve from the infinite cluster during bond dilution. This dilution 
process may represent, e.g., depolymerisation of a bulk macromolecular material into 
fragments that rapidly escape by evaporation into an environment in which further 
degradation is inhibited. For this case, (18) reduces to 

X 

- p a h , / a p  = sn, - iB,,n, = sn, -2Q,+,(1 -p) 'w'g (19) 
, = s + l  

where (13) has been used to evaluate the sum. 
Equation (19), in conjunction with (6), (lo), ( 1  l ) ,  (12) and (14), can be integrated 

numerically for any s. For coordination number z = 3, (6) can be solved explicitly for 
d w ) ,  giving 

1 - 2 ~ - ( 1 - 4 ~ ) " ~  1 - p  -- - 
2w P 

g =  
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-0.02 

where the final expression, valid for p 2 p c ,  follows from (14). (The root of (6) is 
selected that is consistent with Fisher and Essam's (1961) result p *  = 1 - p  above p = p c  
for z = 3, where p* is defined after (14).) Using (20), (19) can be integrated analytically. 

For p = 1 ,  h, = 0 for all s. Since bond dilution ceases at the percolation threshold 
p c =  l / ( z - 1 ) ,  it is interesting to compute the quantities h, at p = p c .  For z = 3 ,  
integration of (19) from p c = i  to p gives 

-1.0 

5+3 

h , ( p c ) =  Ks(I'15+3(s-1,s+3)- 2-(2s+3-j) nj(s - 1 ,  s +3)  
j = O  

s i 4  

-2Qs+1( I15+4(s -2, s + 4 )  - 2-(25+3-J)nj(s -2,  s + 4 )  
j = O  

where 

1 J m + l - k  
m + I k = O m + n + l - k '  nj(n, m) =- n 

This result is obtained using the relation (Gradshteyn and Ryzhik 1980) 

Numerical results based on (21) are shown in figure 1 .  h , ( p c )  is negative for small 
s and increases with increasing s until it becomes positive, peaks, and finally decays. 
Thus, suppression of finite-cluster bond dilution shifts the cluster-size distribution 
toward the larger sizes, as one would expect. For the range of s shown in figure 1 ,  
h , ( p c )  is much smaller in magnitude than n,(pc). However, h , ( p c )  converges to n,(pc) 
in the large-s limit, i.e. c5(pc)+2n,(p,) for large s. 

The latter result is derived by substituting (12) and the relation 

( z - 2 ) ( s + 1 ) + 2  
K3 2s Q5+1= 

0.04 

0.02 

2.0 

1.0 

0 

x 10-4 
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based on (10) and ( l l ) ,  into (15). For z = 3, this yields 

to leading order in s >> 1, where the rightmost equality follows from (12). For r, = 0, 
substitution of this expression into (17) gives p dc,/dp = dn,/dp for s >> 1, or 

c " P " ' - I , d p p .  ' dn, dp  

For s + m ,  the main contribution to the integral comes from p = p c  because the 
large-cluster number density falls off most rapidly near pc.  (This follows from 
asymptotic analysis of (12).) Therefore c,( p,) = n,( p,)/pc = 2nI( p,) for large s, as 
claimed. 

4. Extensions 

Finally, further generalisations of the bond-dilution problem are noted. For the Bethe 
lattice, consideration has been restricted thus far to an initial state in which all bonds 
are intact. The results presented here are readily generalised to an arbitrary initial size 
distribution, provided that the ensemble of clusters for any given size s is the same as 
that for Bernoulli percolation, i.e. all distinct s-clusters containing a given bond are 
equally probable. 

Another generalisation is motivated by the aforementioned interpretation of the 
bond-dilution process as depolymerisation in a condensed phase, say a polymer melt, 
but now with the process of evaporative escape of finite clusters occurring at a finite 
size-dependent rate E,( t).  c, is now interpreted as the size distribution of finite clusters 
remaining in the melt. This process can be represented by subtracting X,E,c, from the 
right-hand side of (1). If E ,  = 0 for s exceeding some maximum value S, then a closed 
set of rate equations for s S S can be obtained. The incorporation of this formulation 
into a phenomenological model of volatile species escape during coal pyrolysis will 
be reported elsewhere. 
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